Brief information about the project

Name of the project	AP14871554 "Optimization of an innovative synthesis of
	aluminized titanium carbide used for synthesis of 2D
	Mxene materials (Ti3C2, Ti2C)"
Relevance	The project will develop a scaled synthesis of materials
	Ti3AlC2, and Ti2AlC, which are precursors for the
	synthesis of 2D materials Ti3C2 and Ti2C. The innovative
	approach of the project is based on multistep optimization
	of the synthesis process to reduce energy costs and to
	design a pilot version of the sintering equipment with a
	capacity of more than 100 g per synthesis.
Purpose	The aim of the project is to optimize the method of
	synthesis of aluminized titanium carbides to increase the
	yield of the final product, reduce the cost of the material
	and to design a pilot version of the sintering equipment for
	further scaling and product commercialization
Objectives	Construction of a small setup to optimize the synthesis
	method.
	Optimization of the precursor mixture homogenization
	process
	Optimization of sintering time and temperature
	Scaling up the optimized synthesis process
Expected and achieved results	The expected results of the project are to optimize the
	method of synthesis of materials of MAX phases (113AIC2
	and I12AIC) and scaling the optimized synthesis method
	to obtain up to 100 g of product per sintering. The proposed
	inuti-stage optimization of the method of synthesis of
	will allow to obtain a cleaner product
	The results of the study are patentable which should
	provide the possibility of subsequent commercialization
	At this stage of the project there are no plans to
	commercialize the resulting product however if the
	project is successful its further implementation in the
	direction of commercialization is planned
Research team members with	Malchik Evodor Scopus Author ID - 57196147903
their identifiers (Scopus Author	ResearcherID: D-5721-2015 ORCID: 0000-0001-6381-
ID. Researcher ID. ORCID. if	0738
available) and links to relevant	• Abdimomyn Saken Scopus Author ID - 57518892100.
profiles	Researcher ID - GOW-8420-2022, ORCID - 0000-0002-
-	5985-9050
	• Kan Tatvana Scopus Author ID - 57359426400.
	Researcher ID - JVF-3477-2024, ORCID - 0000-0002-
	1222-2060.
	• Kaupbay Olzhas- Scopus Author ID - , Researcher ID -
	<u>JCK-9431-2023</u> , OKCID - <u>0000-0003-0553-4477</u>
	• Maidybayev Kairgali - Scopus Author ID -
	57470572700, Researcher ID - <u>JCI-8370-2023</u> , ORCID - 0000-0003-2752-4720
	• Rspaev Murat

	• Starodubceva Alena Author ID - <u>57988905100</u> , Researcher ID - <u>HZD-4969-2023</u> , ORCID - <u>0000-0003-</u> <u>4344-2039</u>
List of publications with links to	
them	
Patents	

Figure 1. High Temperature Tubular Vacuum Furnace for MAX Phase Synthesis

Рисунок 2. Obtained powders of the MAX phase